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Abstract. A method for solving the Schwinger–Dyson equations for the Green function
generating functional of non-Abelian gauge theory is proposed. The method is based on an
approximation of the Schwinger–Dyson equations by exactly soluble equations. For theSU(2)
model the first-step equations of the iteration scheme are solved which define a gauge field
propagator. Apart from the usual perturbative solution, a non-perturbative solution is found,
which corresponds to the spontaneous symmetry breaking and obeys the infrared finite behaviour
of the propagator.

1. Introduction

The Schwinger–Dyson equation (SDE) method is one of the basic tools for investigating of
the Green functions of quantum theory. Hitherto the one universal method for solving SDEs
has been the coupling constant perturbation theory (hereafter simply termed perturbation
theory). The range of applicability of other methods (for example, the 1/N expansion) is
limited by a narrow class of models. In particular, the 1/N -expansion method cannot be
used in the calculations for non-Abelian gauge theories due to the complicated structure of
the leading approximation.

On the other hand, the applicability of perturbation theory to the investigation of non-
Abelian gauge theories is limited by a deep-Euclidean region. In the non-perturbative region
of small momenta the physical vacuum of non-Abelian gauge theories obeys a non-trivial
structure which is beyond the framework of perturbation theory. In SDE terms this fact
can be understood if one takes into account the radical difference in the properties of the
leading-approximation equations of the perturbation theory and the original exact equations.
The SDEs for the generating functional of the Green functions are equations in functional
derivatives. The leading approximation of perturbation theory comprises neglecting the
higher-derivative terms in these equations (just such terms correspond to an interaction).
The leading-approximation equations of perturbation theory are of a lower order compared
with the exact ones; therefore, the class of solutions thus described contracts drastically, and
non-perturbative solutions which correspond to the non-trivial physical vacuum practically
drop out of consideration. This feature of SDEs in the non-perturbative region is noted
repeatedly in simple models (see [1]).

In this work a method for the SDE solution of non-Abelian gauge theory is proposed. It
takes into account the terms with higher derivatives (i.e. self-interaction of the non-Abelian
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fields) ab ovo in the leading approximation. Though we limit ourselves to the simplest
extension of the class of SDE solutions, the results are non-trivial: the non-perturbative
solution which corresponds to spontaneous symmetry breaking (with non-Higgs mechanism)
is found. It obeys a non-singular behaviour of the propagator in the non-perturbative infrared
region of small momenta.

An idea of the method comprises the approximation of SDEs for the generating
functional by equations with ‘constant’ (i.e. independent of sources) coefficients. These
equations have a simple exponential solution, which is a foundation for the linear iteration
scheme. The method is universal, as is perturbation theory, i.e. it is applicable to practically
any model of quantum field theory. For the scalarφ4 theory it has been shown in [2] that
the method describes such non-perturbative phenomena as spontaneous symmetry breaking
and the trivialization ofφ4 theory ind = 4. This method has also been successfully applied
in the investigation of the Gross–Neveu model for finiteN [3].

2. Schwinger–Dyson equations and the iteration scheme

A system of SDEs for the generating functionalG(J, η) of the Green functions of non-
Abelian gauge theory has the form

Dabν
(
δ

iδJ

)
Fbνµ

(
δ

iδJ

)
G+ 1

α
∂µ∂ν

δG

iδJ aν
+ gf abc δ

δη̄c
∂µ
δG

δηb
+ J aµG = 0 (1)

i∂µDabµ
(
δ

iδJ

)
δG

δη̄b
+ ηaG = 0. (2)

HereFaµν(A) = ∂µAaν − ∂νAaµ + gf abcAbµAcν is the gauge field tensor,Dabµ (A) = δab∂µ −
gf abcAcµ is the covariant derivative,f abc are structure constants of a gauge group,J aµ(x) is
the source of the gauge field,ηa(x) is the source of a ghost field,α is the gauge parameter,
andg is the coupling constant. We work in Minkowski space with a metric(1,−1,−1,−1),
andxµyµ ≡ gµνxµyν by definition.

At g = 0 the system (1), (2) has a solution

Gfree= exp

{
1

2i
J ∗Dfree∗ J + iη̄ ∗1free∗ η

}
whereDfree and1free are the free propagators of the gauge fields and ghost field, respectively,
and

J ∗Dfree∗ J ≡
∫

dx dy J aµ(x)(Dfree)
ab
µν(x − y)J aν (y)

etc. The functionalGfree is the generating functional of the free Green functions. The
iteration scheme based onGfree is the usual coupling constant perturbation theory.

We shall use an alternative iteration scheme for the SDEs (1), (2), which is formulated
as follows: the leading approximation is a system of equations with terms proportional to
the sourcesJ andη omitted. (For the system of equation (1), (2) these are the last terms.)
This system has a solution

G0 = expi
{
J ∗ V + η̄ ∗ C + C̄ ∗ η}

whereJ ∗ V ≡ ∫ dx J aµ(x) V
a
µ (x), etc. The coefficient functionsV aµ andCa are solutions

of the corresponding system of ‘characteristic equations’. When constructing the iteration
scheme for the generating functional

G = G0+G1+ · · · +Gn + · · ·
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the omitted termsJG andηG should be considered as perturbations, i.e. the equations of
the iteration scheme are{

Dν
(
δ

iδJ

)
Fνµ

(
δ

iδJ

)
+ 1

α
∂µ∂ν

δ

iδJν
+ gf δ

δη̄
∂µ
δ

δη

}
Gn = −JµGn−1 (3)

i∂µDµ
(
δ

iδJ

)
δGn

δη̄
= −ηGn−1. (4)

A solution of equations (3), (4) has the formGn = PnG0, wherePn is a polynomial
in J and η. Therefore, at each iteration step we obtain a closed system of equations
for the coefficient functions of the polynomialPn, which completely defines the Green
functions of the given step. There is no manifest small parameter in the usual sense in this
scheme: ‘smallness’ is defined by the condition that the Green functions are derivatives of
the generating functional atJ = η = 0, and it is sufficient for us to knowG(J, η) near
zero, i.e. in the region where the neglected terms are small. At each step of the iteration we
approximate the functionalG/G0 by a sum of the polynomialsPn, and the degree of the
polynomial increases with each step. As is known, for ordinary differential equations the
scheme of this type is equivalent to iterations of Volterra-type integral equations and gives
an expansion that converges well. That is why we may hope that this scheme possesses
good convergence properties. In any case it is clear that the convergence of this scheme
is no worse than that of the perturbation theory. The perturbation theory is singular in the
sense of differential equation theory, since the higher derivatives are omitted in the leading
approximation. In contrast to the singular perturbation theory, the scheme proposed is
regular in the above sense. This circumstance gives us hope for improving the convergence
properties (see [4] for further discussion).

To remove the ultraviolet divergences it is necessary to supplement the SDEs (1), (2)
and the iteration scheme equations (3), (4) with the corresponding counterterms. The
counterterms are also defined by the iteration procedure:δz = δz0 + δz1 + · · ·, i.e. at
each step it is necessary to take into account the counterterms of the corresponding order.

Let us consider the leading approximation in more detail. As has been noted above,
the solution of the leading approximation equations is the linear exponential in the sources.
The vacuum structure is defined by the solutions of the characteristic equations forV aµ and
Ca:

Dν(V )Fνµ(V )+ 1

α
∂µ∂νVν + gfC∂µC̄ = 0

∂µDµ(V )C = 0.
(5)

These equations have a great number of solutions, which reflects the non-trivial vacuum
structure of non-Abelian gauge theory. In this connection it is appropriate to recall ’t Hooft’s
conjecture [5] on the existence of different vacuum modes for non-Abelian gauge theory
at zero temperature: a superconducting one (spontaneously broken), dual superconducting
(confinement), etc. Realization of either mode depends on the values of some quantities
(manager parameters) whose definition is a problem of the quantum field dynamics. It is
reasonable to suppose that the whole set of solutions of the characteristic equations (5) is
divided into classes, each corresponding to some mode of the gauge theory in the above
sense.

In this paper we limit ourselves to investigation of the first-step of the iteration scheme
based on the simplest solutions of the characteristic equations (5).

The trivial solution of equations (5),V aµ = Ca = 0 (i.e.G0 = 1), leads to an iteration
scheme which is simply the reconstructed perturbation theory. The simplest extension of
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the set of vacuum solutions compared with the trivial perturbative vacuum comprises taking
into account non-zero constant solutions of equations (5). Namely, we choose the leading
approximation in the form

G0 = expi{J ∗ V } (6)

where the vacuum vectorsV aµ are independent of the spacetime variables and satisfy the
condition

f abcf cdhV bν V
d
ν V

h
µ = 0, (7)

which follows from the characteristic equations (5), ifC = ∂V = 0. Below we shall
consider only this class of the leading approximation solutions. Surely we have no prior
physical foundation (except for reasons of simplicity) for the choice of this class of solutions.
Nevertheless, we shall see that this simple set of solutions leads to a new spontaneously
broken mode.

Concluding our discussion of the leading approximation, let us touch upon the definition
of the ground state (‘physical vacuum’). Due to the linearity of the SDEs (1), (2) and the
iteration scheme equations (3), (4), an arbitrary linear combination of solutions is also a
solution. Therefore, the physical vacuum functionalG = 〈0|0〉J should be constructed as
a linear combination of partial solutions, each of them corresponding to some solution of
the characteristic equations (5). In other words, the physical vacuum is a superposition of
V vacua. This combination should be chosen in such a way as to maintain the admissible
physical properties of the Green functions (for example,〈0|Aaµ|0〉 = 0) and the energy
minimality condition.

To formulate the iteration scheme in terms of the polynomialsPn, it is convenient to
introduce the matrix quantity

Wab
µ = igf abcV cµ. (8)

Then, the iteration scheme equations have the form of equations for the polynomialsPn:{[
Dν(V )+ igf δ

δJν

][
Fνµ

(
δ

iδJ

)
+Wν

δ

δJµ
−Wµ

δ

δJν

]

+ i[Wµ,Wν ]
δ

δJν
+ 1

α
∂µ∂ν

δ

iδJν
+ gf δ

δη̄
∂µ
δ

δη

}
Pn = −JµPn−1 (9)

∂µ

[
Dµ(V )+ igf δ

δJµ

]
δPn

δη̄
= iηPn−1. (10)

HereP0 = 1. The first-step solutionP1 defines the leading approximation for the propagators
of the gauge and ghost fields. The following steps define the many-particle functions.

3. Solution of first-step equations

The solution of the first-step equations of the iteration scheme (9), (10) is the quadratic
polynomial in the sources

P1 = 1

2i
J ∗D ∗ J + iη̄ ∗1 ∗ η. (11)

Equations (9), (10) give us equations for the functionsDab
µν(x − y) and1ab(x − y). The

equation forDµν can essentially be simplified by modifying the gauge condition. Instead of
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the usual covariant gauge used above, it is convenient to use the modified gauge condition
(‘V -gauge’) with the gauge-fixing term

Lgauge= − 1

2α
(Dµ(V )Aµ)2. (12)

The ghost terms should be changed correspondingly. For the transition to theV -gauge in
equations (1)–(4), (5), (9), (10), it is sufficient to perform the substitution

∂µ→ Dµ(V ). (13)

An essential prerequisite is that the leading approximation condition (7) does not change in
the case in question.

The equations have a particularly simple form in the gaugeα = 1 (‘diagonalV -gauge’).
Then, the equation forDµν in momentum space is

{K2gµν + 2[Kµ,Kν ]}D̃νλ(k) = −gµλ (14)

wherek is the momentum, and the following notation has been introduced:

Kabµ = kµδab −Wab
µ . (15)

In the region of largek equation (14) tends to the equation for the free propagator in the
diagonal gauge, i.e. atk→∞

D̃µν(k) ≈ − 1

k2
gµν. (16)

The equation for the ghost propagator1 is

K21̃(k) = −1. (17)

In the large-k region the propagator̃1 also tends to the free propagator. Therefore, the
ultraviolet behaviour of the solutions with a non-trivial vacuum vectorVµ is the same as
for the usual perturbation theory.

Below we consider the case ofSU(2) gauge group and restrict ourselves to the subset
of constantVµ with zero field tensorFµν(V ) = 0, or, equivalently, with

εabcV bµV
c
ν = 0. (18)

It is clear that condition (18) ensures the leading-approximation condition (7). The energy
of that type of solution is zero, as for the perturbative solution with trivial vacuum. In
that sense, this set of solutions can be termedquasiperturbative. Equation (18) gives us
[Kµ,Kν ] = [Wµ,Wν ] = 0, and the solution of equation (14) is reduced to the inversion of
the matrixK2. The result is

D̃ab
µν(k) = −gµν

[
p

p1
δab + 2(kWab)

p1
+
(

1

k2
− p

p1

)
(V aV b)

V 2

]
(19)

where the following notation has been introduced:

p(k, V ) = k2+ g2V 2 p1(k, V ) = p2− 4g2(kV )2. (20)

A solution of the ghost propagator equation (17) is also given by equation (19) (without
gµν).

Except for equations (14) and (17), the first-step equations give one more relation that
contains a quantityDµν(0), which should be understood as some regularization. In essence
this relation is a condition for the first-step countertermsδz1. (There is no need to introduce
the leading approximation counterterms in this case, i.e.δz0 = 0). Since the Green functions
of the first step are finite, this condition for the counterterms is necessary to remove the
ultraviolet divergences at thesecond stepof the scheme. This peculiarity of the given
iteration scheme is displayed here in exactly the same manner as for the scalar field theory
(see [2]).
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4. Gauge field propagator

Let us now turn to a possible physical interpretation of the solutions. AtVµ = 0 Dµν and
1 are free propagators of the gauge and ghost fields, and the whole iteration scheme is a
reconstructed series of the perturbation theory. AtVµ 6= 0 the situation is more complicated.
It is clear that in this case it is difficult to interpret the functionDµν given by (19) as the
propagator of a particle in the Poincaré invariant theory. Let us recall, however, that we
have a number{G(V )} of solutions of the SDEs, each corresponding to some vectorVµ
satisfying the condition (18). Due to equation (18) the field strength tensor is identically
zero and any such solution possesses zero energy. Therefore, a candidate for the ‘physical
vacuum functional’ for this set of solutions is a superposition of all solutions. We shall
exploit this fact in the construction of a Poincaré-invariant solution which can be interpreted
as a particle propagator, i.e. a function depending only on the momentumk and the scalar
quantity

v2 = V 2 ≡ V aµV aµ . (21)

(The quantityv2 plays the role of an order parameter.) The construction is equivalent, in
essence, to some averaging, i.e. an integration with a measure dµ(V ), we shall therefore
denote it by angular brackets:〈G〉 = ∑

V G(V ), etc. In the foundation of this operation
we set the following conditions:

〈V aµ 〉 = 0 〈V 2〉 = v2. (22)

Their necessity for the Poincaré-invariant theory is evident. It is also evident that

〈V aµV bν 〉 = 1
4v

2gµνE
ab (23)

where trE = 1. To determine the form of the matrixEab, consider the leading
approximation condition (18). The geometrical meaning of condition (18) is the collinearity
of the vectorsVµ in isotopic space. Consequently, atVµ 6= 0 there exists a selected
direction in isotopic space. This direction can be chosen as a basis vector, for examplen3.
In this basisV aµ = δa3vµ, andEab = δa3δb3. Therefore, atVµ 6= 0 isotopic symmetry is
spontaneously broken.

Further calculation is reduced to the averaging of the functionsf ((kV )2) = p/p1

and f ab = f · (V aV b)/V 2. First of all, note that atk → 0, f → 1/g2v2, and at
k → ∞, f → 1/k2. These Poincaré-invariant properties off should, of course, be
conserved for〈f 〉 as well.

With equations (22)–(24) and its generalizations for an arbitrary monomial inVµ, the
following formulae can be proved:

〈(kV )2n〉 = (k2v2)n
0(n+ 1

2)

(n+ 1)!0( 1
2)

〈(kV )2n(V aV b)〉 = Eabv2〈(kV )2n〉
(24)

which are necessary for the calculation of〈Dµν〉. The result of the calculation in the above
basis is as follows:

〈D̃33
µν(k)〉 = −gµν

1

k2
(25)

〈D̃11
µν(k)〉 = 〈D̃22

µν(k)〉 = −gµν
k2+ g2v2

2g2v2k2

(
1−

√
1− 4g2v2k2

(k2+ g2v2)2

)
. (26)
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(Other isotopic components are equal to zero.) Therefore, along the selected isotopic
direction the particle propagates as a free one, but along other directions a separation of
the region of momenta exists, the scale of the separation being the quantityg2v2. It is
necessary to stress that both the limiting cases above (k2 → 0 andk2 → ∞) belong to
the region of applicability of the calculations performed, which is defined by the condition
|4g2v2k2/(k2+g2v2)2| < 1. Consider the question of analytical continuation. Equation (26)
defines two analytical functions depending on the choice of branch of the function

√
z2,

but neither satisfies both the above asymptotic conditions simultaneously and, consequently,
these functions are not solutions of the problem. Hence, as a solution one should choose
at largek the branch with the behaviour 1/k2, and at smallk another branch which is a
constant 1/g2v2. At the points±g2v2 the solution goes from one branch to another, i.e. from
the ‘perturbative’ sheet to the ‘non-perturbative’ one. At the pointk2 = g2v2 the solution
is continuous, and at the pointk2 = −g2v2 it has a discontinuity. (Note that the first-step
calculations of the iteration scheme do not fix the sign ofv2.) Such unusual features of
the solution near the separation points are likely to be connected with our limitation of the
characteristic equation solutions. Probably an extension of the class of solutions will lead
to smoothing of the propagator behaviour near the points of separation of the perturbative
and non-perturbative regions.

5. Discussion

In this paper we have attempted to introduce a new iteration scheme to solve the Schwinger–
Dyson equations for non-Abelian gauge theory. As a very first step we have considered
a scheme based on the simplest constant solutions of the characteristic equations (5). Of
course, there are no prior grounds for expecting such a set of solutions to be useful for
physical applications. Some other sets of more non-trivial solutions (instanton-like and
so on) of the characteristic equations are likely to be of real physical interest. Dealing
with coordinate-dependent solutions is a more difficult task; in particular, the averaging
procedure of section 4 should be essentially modified. Another important question is the
correspondence of the proposed method with the functional integral approaches, such as the
well known background field method [6]. In spite of their evident similarity, the proposed
iteration scheme seems to be somewhat different: the structure of the expansions is distinct.
The problem of the correspondence requires further investigations based on the calculation
of higher steps of the iteration scheme.

The set of quasiperturbative solutions of sections 3 and 4 leads to spontaneous breaking
of SU(2) gauge symmetry. The question arises as to whether such solutions can be
used to construct a realistic model of electroweak interactions in the spirit of dynamical
gauge symmetry breaking models without Higgs bosons (see [7] and references therein).
Further investigation which should essentially extend the class of solutions is necessary to
eliminate this question. On the other hand, the set of quasiperturbative solutions satisfying
condition (18) considered here does not exhaust the solutions with zero energy, and some
further averaging to restore the symmetry may be necessary.

For SU(3) gauge group (the case of QCD) the variety of solutions increases greatly
in comparison with theSU(2) group (see, for example, [8]). Avoiding discussion of this
case, nevertheless note that the infrared finite behaviour of the gluon field propagator has
recently been discussed in detail (see [9] and references therein).
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